# An Overview of Time Series Forecasting for Hotel Revenue Management

Amir Atiya Dept Computer Engineering Cairo University <u>amir@alumni.caltech.edu</u>

#### Hotel Revenue Management

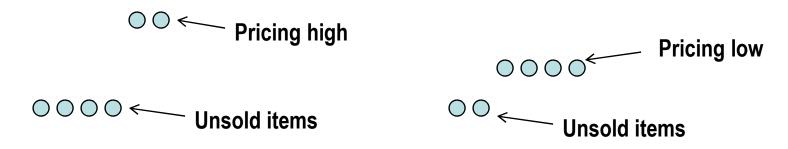
- The abundance of data in many applications and the opportunity to optimize operations based on the data has opened many opportunities.
- One such application is revenue management for hotels.

#### Hotel Revenue Management

- Revenue management is the science of controlling price and/or inventory to maximize revenue.
- The hotel industry can potentially significantly increase their revenue through an optimized revenue management system.
- By dynamically setting a price and/or room allocation per category, one can optimize the revenue.

# Hotel Revenue Management (Problem Description)

- Pricing rooms too cheaply can cause losing higher revenue from future higher-priced reservations (lost opportunity).
- Setting too high of a price could leave more rooms unbooked.



• This leads to a sophisticated optimization problem that takes into account future bookings and their probabilities.

#### **Price Influencers**

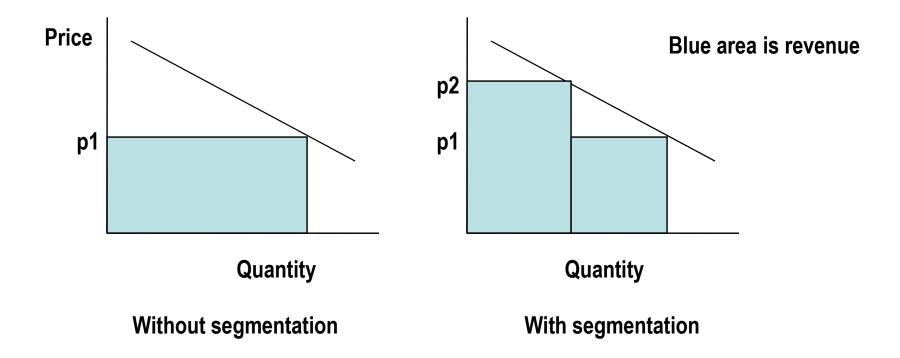
- Value for the customer.
- Price of competing products.
- Reference price.

# Several Aspects of Revenue Management

Market Segmentation

- Segment the market in order to apply differential pricing.
- Examples
  - Online versus in-store.
  - Airlines: advance purchase with penalties for changes, versus late purchase with unrestricted ability to change.
  - Outlets.

#### Market Segmentation



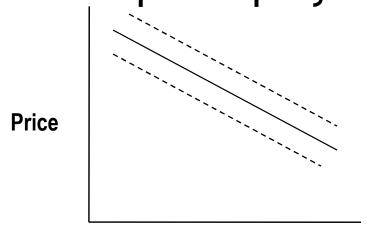
• Inventory control: Optimize the amount allocated to each segment.

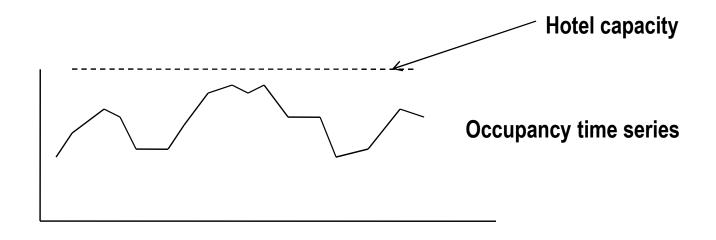
# Other Aspect of Revenue Management

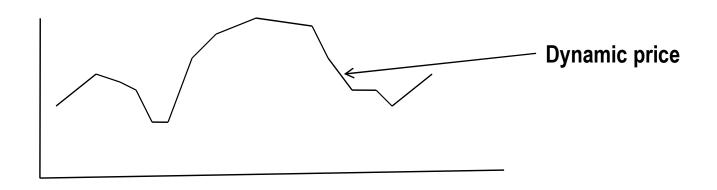
**Dynamic Pricing** 

- Pricing is dynamic and changes day by day.
- It is influenced by day to day changes of demand.
- Seasonal aspects play a large role.

Demand







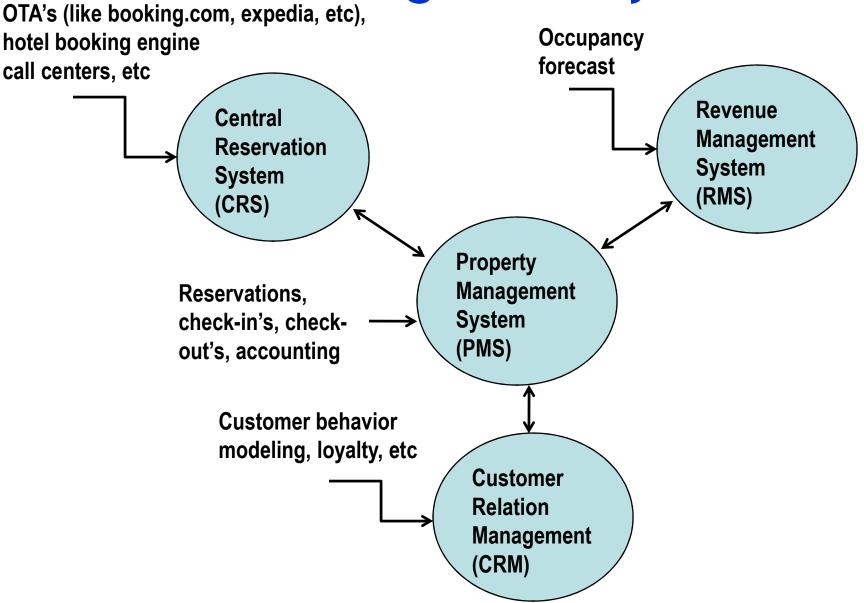


- . There is a major trend for businesses to move from inventory-control pricing to dynamic pricing.
- Now we have a better infrastructure for adjusting prices quickly, due to prevalence of online sales, etc.

- Within a few years electronic price display will be cheap enough, that they will be deployed in standard brick and mortar stores.
- This simplifies price changes.



#### Hotel Management Systems



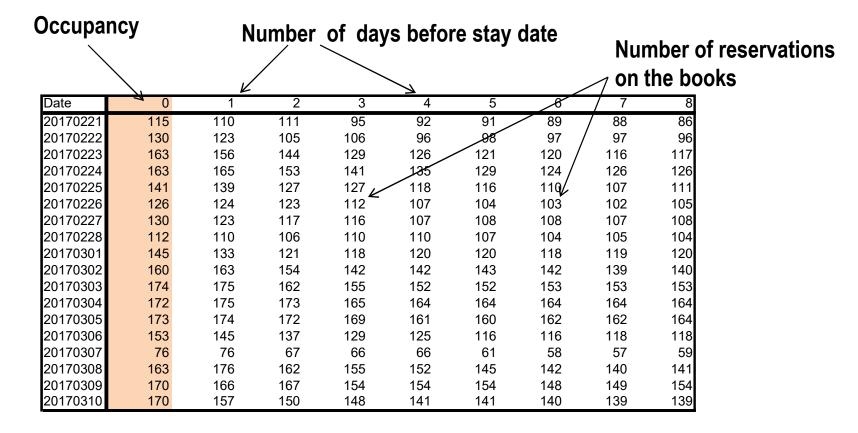
#### How Hotels Work?

- Stay date: the intended arrival day of the guest.
- *Reservations* arrive a few days or weeks before intended arrival day.
- On the books (OTB) reservations: Reservations that exist currently for a particular stay date.
- Any reservation books a certain number of days, or *length of stay (LOS)*.
- Some reservations are booked as a block (group reservations).

### How Hotels Work?

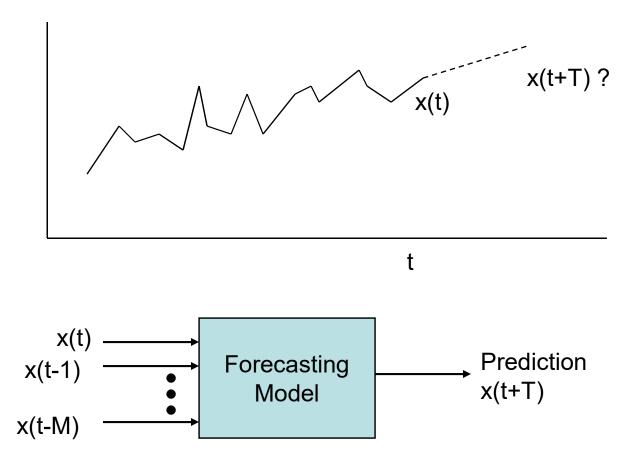
- *Cancellations*: A reservation can be cancelled prior to arrival.
- *No shows:* Guests who have a valid reservation, but do not show up on stay date.
- *Hotel capacity*: Total number of available rooms.
- *Overbooking*: When the hotel books more rooms than available capacity.
- *Denials*: Guests who are denied a reservation because hotel is fully booked.

#### Hotel Reservations



- The occupancy time series indicates demand.
- It has a major impact on the pricing.

# Overview of Time Series Forecasting



# Time Series Forecasting Approaches

- Reservations-based methods.
- Conventional: e.g. ARMA, exponential smoothing.
- Machine learning.
- Monte Carlo.

- The reservations possess useful dynamics that help in forecasting the final arrivals or occupancy.
- The pick up computes the average number of reservations "picked up", from now till stay date.

| Number of days before stay date Number of reservations |     |     |     |     |     |     |              |      |     |                     |  |  |
|--------------------------------------------------------|-----|-----|-----|-----|-----|-----|--------------|------|-----|---------------------|--|--|
| Occupancy                                              |     | k   |     |     |     |     | on the books |      |     |                     |  |  |
| Date                                                   | 0   | 1   | 2   | 3   | 4   | 5 / | 6            | 7    | 8   | Number<br>picked up |  |  |
| 20170221                                               | 115 | 110 | 111 | 95  | 92  | _91 | 89           | / 88 | 86  | 23                  |  |  |
| 20170222                                               | 130 | 123 | 105 | 106 | 96  | 98  | 97 /         | 97   | 96  | 34                  |  |  |
| 20170223                                               | 163 | 156 | 144 | 129 | 126 | 121 | 120 /        | 116  | 117 | 37                  |  |  |
| 20170224                                               | 163 | 165 | 153 | 141 | 135 | 129 | 124 🖌        | 126  | 126 | 28                  |  |  |
| 20170225                                               | 141 | 139 | 127 | 127 | 118 | 116 | 110          | 107  | 111 | 23                  |  |  |
| 20170226                                               | 126 | 124 | 123 | 112 | 107 | 104 | 103          | 102  | 105 | 19                  |  |  |
| 20170227                                               | 130 | 123 | 117 | 116 | 107 | 108 | 108          | 107  | 108 | 23                  |  |  |
| 20170228                                               | 112 | 110 | 106 | 110 | 110 | 107 | 104          | 105  | 104 | 2                   |  |  |
| 20170301                                               | 145 | 133 | 121 | 118 | 120 | 120 | 118          | 119  | 120 | 25                  |  |  |
| 20170302                                               | 160 | 163 | 154 | 142 | 142 | 143 | 142          | 139  | 140 | 18                  |  |  |
| 20170303                                               | 174 | 175 | 162 | 155 | 152 | 152 | 153          | 153  | 153 | 22                  |  |  |
| 20170304                                               | 172 | 175 | 173 | 165 | 164 | 164 | 164          | 164  | 164 | 8                   |  |  |
| 20170305                                               | 173 | 174 | 172 | 169 | 161 | 160 | 162          | 162  | 164 | 12                  |  |  |
| 20170306                                               | 153 | 145 | 137 | 129 | 125 | 116 | 116          | 118  | 118 | 28                  |  |  |
| 20170307                                               | 76  | 76  | 67  | 66  | 66  | 61  | 58           | 57   | 59  | 10                  |  |  |
| 20170308                                               | 163 | 176 | 162 | 155 | 152 | 145 | 142          | 140  | 141 | 11                  |  |  |
| 20170309                                               | 170 | 166 | 167 | 154 | 154 | 154 | 148          | 149  | 154 | 16                  |  |  |
| 20170310                                               | 170 | 157 | 150 | 148 | 141 | 141 | 140          | 139  | 139 | 29                  |  |  |
|                                                        |     |     |     |     |     |     |              |      | Avg | 20.4                |  |  |

- Number picked up is the extra amount of reservations that came from now till stay date.
- The average of this over all history is the average pick-up.
- Add that average to the on-the-books reservation, to obtain the forecast.

| Occupancy |     |     | Number of days before stay date |     |     |     |     |      |      | Number of reservations |      |  |
|-----------|-----|-----|---------------------------------|-----|-----|-----|-----|------|------|------------------------|------|--|
| Date      | 0   | 1   | ¥                               | 3   | 4   | → 5 | 6   | V    |      | the bo                 | up   |  |
| 20170221  | 115 | 110 | 111                             | 95  | 92  | 91  | 89  | 88   | / 86 |                        | 23   |  |
| 20170222  | 130 | 123 | 105                             | 106 | 96  | 98  | .97 | 97 / | 96   |                        | 34   |  |
| 20170223  | 163 | 156 | 144                             | 129 | 126 | 121 | 120 | 116/ | 117  |                        | 37   |  |
| 20170224  | 163 | 165 | 153                             | 141 | 135 | 129 | 124 | 126  | 126  |                        | 28   |  |
| 20170225  | 141 | 139 | 127                             | 127 | 118 | 116 | 110 | 107  | 111  |                        | 23   |  |
| 20170226  | 126 | 124 | 123                             | 112 | 107 | 104 | 103 | 102  | 105  |                        | 19   |  |
| 20170227  | 130 | 123 | 117                             | 116 | 107 | 108 | 108 | 107  | 108  |                        | 23   |  |
| 20170228  | 112 | 110 | 106                             | 110 | 110 | 107 | 104 | 105  | 104  |                        | 2    |  |
| 20170301  | 145 | 133 | 121                             | 118 | 120 | 120 | 118 | 119  | 120  |                        | 25   |  |
| 20170302  | 160 | 163 | 154                             | 142 | 142 | 143 | 142 | 139  | 140  |                        | 18   |  |
| 20170303  | 174 | 175 | 162                             | 155 | 152 | 152 | 153 | 153  | 153  |                        | 22   |  |
| 20170304  | 172 | 175 | 173                             | 165 | 164 | 164 | 164 | 164  | 164  |                        | 8    |  |
| 20170305  | 173 | 174 | 172                             | 169 | 161 | 160 | 162 | 162  | 164  |                        | 12   |  |
| 20170306  | 153 | 145 | 137                             | 129 | 125 | 116 | 116 | 118  | 118  |                        | 28   |  |
| 20170307  | 76  | 76  | 67                              | 66  | 66  | 61  | 58  | 57   | 59   |                        | 10   |  |
| 20170308  | 163 | 176 | 162                             | 155 | 152 | 145 | 142 | 140  | 141  |                        | 11   |  |
| 20170309  | 170 | 166 | 167                             | 154 | 154 | 154 | 148 | 149  | 154  |                        | 16   |  |
| 20170310  | 170 | 157 | 150                             | 148 | 141 | 141 | 140 | 139  | 139  |                        | 29   |  |
|           |     |     |                                 |     |     |     |     |      |      | Avg                    | 20.4 |  |

- Example: We need to forecast occupancy for 20170310.
- Pick-up forecast = OTB + Avg pick-up = 141 + 20.4 = 161 approximately.
- Error in forecast = 170 161 = 9.

- The pick-up method is very effective.
- It is simple to implement, and is widely used by practitioners.

# **Conventional Approaches**

• Autoregressive (AR):

$$x_t = a_1 x_{t-1} + a_2 x_{t-2} + ... + a_k x_{t-k} + \epsilon_t$$
  
 $x_t = \text{time series}$ 

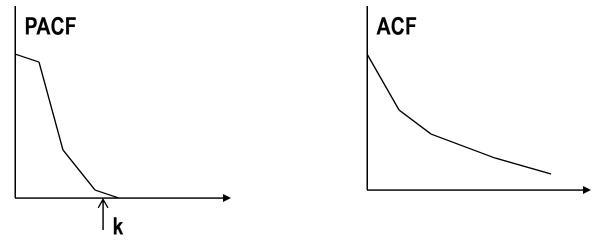
 Autoregressive moving average (ARMA(k,m)):

$$x_{t} = a_{1}x_{t-1} + a_{2}x_{t-2} + \dots + a_{k}x_{t-k} + b_{1}\epsilon_{t}$$
$$+ b_{2}\epsilon_{t-1} + \dots + b_{m}\epsilon_{t-m+1}$$

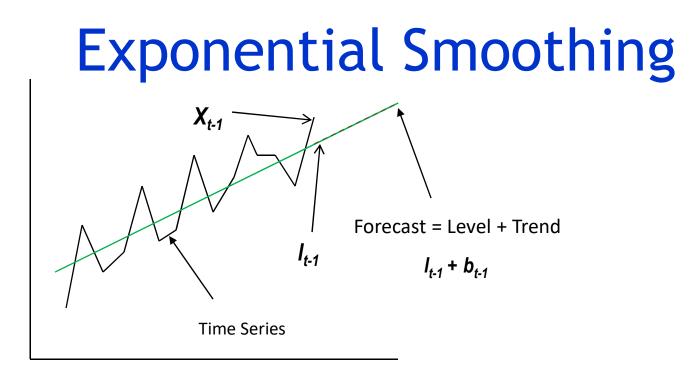
ARIMA

# **Box Jenkins Approach**

- It is an approach to design ARMA models.
- Check for nonstationarity. If nonstationary, use ARIMA.
- To obtain the orders *k*, *m* of ARMA(*k*,*m*), check autocorrelation plot and partial autocorrelation plot.



• Also can use Bayesian information criterion (BIC).



Holt's model:

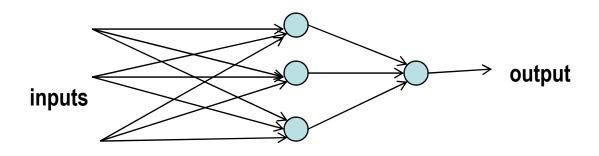
$$l_t = a x_t + (1-a)(l_{t-1} + b_{t-1})$$
  

$$b_t = \beta (x_t - l_{t-1}) + (1-\beta)b_{t-1}$$

- where *l<sub>t</sub>* is the estimated level and *b<sub>t</sub>* is the estimated trend.
- *m* step ahead forecast:  $x_{t+m} = l_t + m b_t$

#### Machine Learning Models

- Typically nonlinear models that learn relation between inputs and outputs, using data driven approaches, or certain probability models.
- Example: Neural networks:
- Networks of "neurons" inspired by the brain's information processing ability:



# Neural Network (Contd)

• NN output is given by

$$y = v_0 + \Sigma_j v_j f(\Sigma_i w_{ji} x_i + w_{i0})$$

- The weights w<sub>ji</sub> and v<sub>j</sub> are learned through minimizing the error function.
- The input variables are the past lags  $x_t$ ,  $x_{t-1}$ , ...,  $x_{t-k}$
- The output y is the value to be forecasted: x<sub>t+L</sub>

# Machine Learning (Contd)

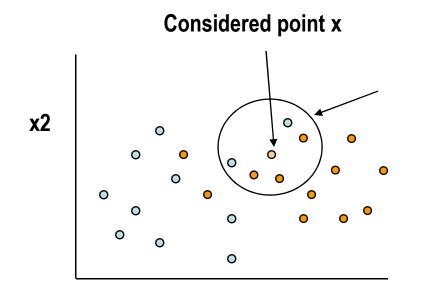
- Support vector regression (SVR)
- Forecast:  $f(x) = \Sigma_i w_i x_i + b$
- Obtain w<sub>i</sub> so as to minimize:

$$J = \Sigma_i w_i^2 + C \Sigma_m |y_m - f(x_m)|_{\epsilon}$$

- where
  - $w_i$  is a weight parameter
  - $x_m$  and  $y_m$  are respectively input and output training vectors.
  - $|_{\epsilon}$  is the  $\epsilon$ -sensitive error.

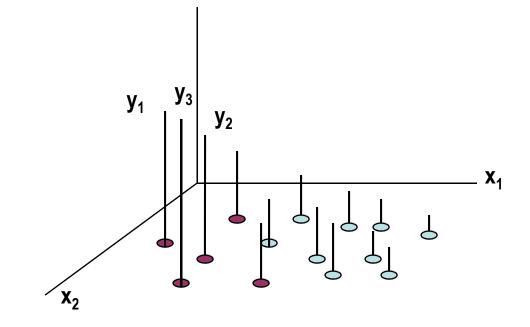
# Machine Learning (Contd)

- K Nearest Neighbor:
- Consider the training set vectors  $(x_t, x_{t-1}, \dots, x_{t-k})^T$  with target output being the value to be forecasted:  $y_t = x_{t+L}$



# K-Nearest Neighbor (Contd)

• Forecast =  $Avg(y_i)$  over the K neighbors



#### Monte Carlo Forecasting

- Obtain from first principles the physical model relating the quantity to be forecasted, and any internal variables.
- Model uncertainty using some probability densities.
- Simulate the model forward using Monte Carlo, and obtain the forecast.
- Examples of applications: weather forecasting.

# **Questions**?

Please feel free to contact me any time during the year and further at <u>amir@alumni.caltech.edu</u>