Machine Learning and Optimization
in Tourism and Hospitality

Roberto Battitt and Mauro Brunato
LION-lab
University of Trento

Objectives of course
1. Understand the “landscape” of Machine
Learning

2. Understand the “landscape” of Intelligent
Optimization

3. Disruptive innovation by combining ML + 10

(“automated creativity”)

4. Opportunities for tourism and hospitality

5. Simulation-based optimization



Some motivation ...
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Data... and price wars

Aldo, Hotel Tradition

200 € 160 € 120 € 2 22¢€  17¢
Giovannl Hotel Novel \ : : j
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...marginal production cost!

« Marginal cost of water

« H20 price/liter




Theory or painful practice?

Airbnb (or others ...)
«"Automatic price determination”

«"Optimize my fill*

General-purpose pricing schemes based on
average price analysis are widespread, give
results in the short term, but are dangerous for the
hotelier in the medium / long term

Exponential revolution of algorithms,

with exponential opportunities and threats

1) Computer power (speed)
2) Availability of memory (and data)

3) Progress in theory (artificial intelligence,
neural networks, machine learning, data,
optimization)
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Exponential revolution...

« ... we are used to thinking linearly (gradual changes)

The smart farmer...

2X2X2X2..... (64 volte)

18,446,744,073,709,551,616
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DRAM Bits / Dollar

Dynamic RAM Price
Bits per Dollar at Production
(Packaged Dollars)
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Note that DRAM speeds have increased during this period.

In this context...
one ring to rule them all
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What’s behind

« use data to build models and extract knowledge

Machine learning or learning from data

« exploit knowledge to automate the discovery
of Improving solutions

Optimization (automated problem solving)

« connect insight to decisions and actions.

Prescriptive analytics (much more than Bl)
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Part 1
The landscape of Machine
Learning



A “zip” of the history of Al - NN - ML

Statistics/Machine

Symbolic Al Syb-symbolic |
learning. Deep

(up to 1985) Neural nets learning...
fymbols Knowledge in

ogic parameters
Expert systems Dynamical
Explicit symbolic s;’stems
programming Neural Nets /
Inference, search Backprop
algorithms Bayesian learning
Al programming Deep learning
languages _ Connectionism
Rules, Ontologies, 19
Plans, Goals...

Learning from Data and Machine Learning

If you show a picture to a three-year-old and ask if there is a tree in it, you will
likely get the correct answer. If you ask a thirty-vear-old what the definition
of a tree is, you will likely get an inconclusive answer. We didn’t learn what
a tree is by studying the mathematical definition of trees. We learned it by
looking at trees. In other words, we learned from ‘data’. e

NMnctafa



A zip of the history of Al - NN - ML

Symbolic Al Syb-symbolic Statistics/Machine
learning. Deep

(up to 1985) Neural nets learning...

Easier to debug More robust against noise

Eas!er to explain Faster (from inputs to outputs)

Easier to control Less knowledge upfront

Not so Data-based Easier to scale up

More useful for explaining Data-based

people’s thought More useful for connecting to

Better for abstract neuroscience

problems Better for perceptual

Fragile problems

Needs knowledge elicitation 1

Curse of dimensionality

Why do we need models? Why surrogates? \

Three ways of building models

output Buy or not \

predictions

Room type and
characteristics
Price .
Context S
Advertisement =

Input



1) Explicit and rigid models

Pressure =Nk T/V

1

e.g., Physics: Boyles’s law:

"For a fixed mass of gas, at a constant
temperature, the product (pressure x
volume) is a constant.”

PV=NKkT

]

(Volume, Temperatu re) Why do we need other models? \

2) Parametric, with statistics

Quantity demanded

Ronald Fisher in 1913

~_ A0 AQ
Proportionate change in quantity demanded = Q *lm_g_
Proportionate change in price ‘aP“m‘aP

e.g., Maximum likelihood estimation

Price Is this related to Machine Learning?



3) Non-parametric models,
neural nets, modern ML (i960++ 1985, 2010)

Recommendation

Eduardo Caianiello, 1961

il %,
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Very flexible, no rules elicitation,
Only need abundant (relevant) data

(Movie, Viewer)

Different models for different contexts
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The dream

"give computers the ability to learn without being
explicitly programmed" ( , 1959).

The Tool

Weights of the flexible model are determined
via optimization, but aiming at generalization
(learning is mean not end)

No need to be an expert to improve
businesses
Business need data scientists

Refresh: vectors and scalar products

. [4.0, -3.0, 4.0, ...] ——@

. [2.0, -2.0, -3.0, ...]

.8.!) 6.10 -112.0 /

.80 +6.0 -12.0=20 —y

Related to linear correlation

“Keys and keyholes”

28
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+1 -1+1+1-1 +1 1 +1 -1 1 1+ 1 +1 1
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M OVleS and Vlewe rS (hotel rooms and customers)

Moviel =[1.2,3.3, 2.1, ooy cvey evrry ooy 1.7]
Movie2 = [3.2, 5.8, 1.2, ooy cveey evrry vvy 3.4]

Viewer1 = [6.2,5.6,7.2, .... 2.1]

Map to vectors of the same dimensions 2> m, v

Obtain rating by simple scalar product (measure «degree of collinearity
fo two vectors»

— Measure errors

Objectiv\mq_data_i (m_i.vi=ri?
Minimize to determine vectors!



Movies and Viewers

o P

viewer (@ ([@H|®| « - -----

e e G add contributions - predicted
trom each factor rating

viewoer factors

movie () e |®@| = ------

AN A\

Quegli che pigliavano per altore altro che la natura, maestra de' maestri, s'affaticavano invano.
(Leonardo Da Vinci)



The biological metaphor

We are the living proof of learning from data

« Our neural system is composed of 100 billion
computing units (neurons) and 10'° connections
(synapses).

« How can a system composed of many simple
iInterconnected units give rise to highly complex
activities?

« Emergence: complex systems arise out of a
multiplicity of relatively simple interacting units.

Physics!
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Drawings of cortical lamination by Santiago Ramon y Cajal, each showing a vertical
cross-section, with the surface of the cortex at the top. The different stains show the
cell bodies of neurons and the dendrites and axons of a random subset of neurons.



Biological motivations

‘K e
kb Dendrites, ° Microtubule
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Neurons and synapses in the human brain

Artificial Neural Networks

* A neuron is modeled as a simple computing

unit, a scalar product w x (“pattern matching”)
followed by a sigmoidal (“logistic”) function.

* The complexity comes from having more
Interconnected layers of neurons involved in a

complex action (if linear layers are cascaded,
the system remains linear)

* The "squashing” functions is essential to
Introduce nonlinearities in the system



MLP architecture

« a large number of interconnected units working
In parallel and organized in layers with a
feedforward information flow.

fast “no reasoning Scalar products “grandmother neurons”

Simple pattern matching, “key” — “keyhole”

out

Squashing function

What Is learning?

« Learning is more than memorizing («learning by
heart»)

« Unifying/compressing different cases by
discovering the underlying explanatory laws.

« Learning from examples is only a means to
reach the real goal: generalization, the
capability of explaining new cases



How to learn:
Supervised machine learning

a «teacher» is giving labeled examples

4 )

X1 Internal

—_—
- parameters
— > ofte L Cy

classifier

&

Accommodation offer Tourist buys or not

Given
Examples - (xi; vyi),1=1;..;L
.Classification ™. [20¢!
N Regressi()n Output can be probability
Find

« «Best» internal parameters of the system



Learning from labeled examples:
minimization and generalization
* A flexible model f(x;w), where the flexibility is

given by some tunable parameters (or
weights) w

* determination of the best parameters is fully
automated, this is why the method is called
machine learning after all

Very flexible models




Learning from labeled examples:
minimization and generalization (2)

. fix the free parameters by demanding that the
learned model works (approximately)

correctly on the examples in the training set.

i power Of opt|m|zat|on: full clarity about the objective

- 1. define an error measure to be minimized,

- 2. determine optimal parameters via (automated)
optimization

Learning from labeled examples:
minimization and generalization (3)

. Suitable error measure is the sum of the errors
between the correct answer (given by the example
label) and the outcome predicted

. if the function is smooth one can discover points of

low altitude by being blindfolded and parachuted to
a random initial point...

(gradient descent)



Gradient descent

J(84,6,)




RMS (root mean square) error function

- Individual errors
© Square
- Average (Sum and divide)

- Square root is optional... (optimizing sum of
sguares or its square root leads to the same result)

2 2 92
| ) €y + €5+ -+ ¢
RMS = \/ 1 2 £

(

Error Backpropagation

How do we learn optimal MLPs from examples?

take a "guiding” function to be optimized (e.g., sum-
of-squared errors on the training examples)

. Use gradient descent with respect to the weights to
find the better and better weights

1. Stop the descent when results on a validation set
are best (if over-learning, generalization can
worsen). Learning is not an end, but a means for
generalizing.



Batch backpropagation

Given an MLP, define its sum-of-squared-
differences energy as:

| — 1 —
E(w) :j; Egt — op(w)

Let the initial weights be randomly distributed

Partial derivatives

Calculate the gradient g = VE(uwy)

skiing

The weights at the next iteration k + 1 are
updated as follows
Wkl = Wk — € G-

why small epsilon?

Learn, validate, test!

careful experimental procedures to measure the
effectiveness of the learning process.

It is a terrible mistake to measure the
performance of the learning systems on the
same examples used for training

The test set is used only once for a final
measure of performance.



Learn, validate, test!

VALIDATION
TES'J_I;U_IN& SET

Deep neural networks

« Some classes of input-output mappings are
easier to build if more hidden layers are
considered.

« The dream: feed examples to an MLP with
many hidden layers and have the MLP
automatically develop internal
representations (encoded in the activation
patterns of the hidden-layers).



Deep Learning

Feature detectors in a frog retina (Bufo Bufo) are hard-wired and specialized to
detect a fly at the distance that the frog could strike.

Deep networks
Convolutional Neural Networks

s = f(t) :/ Dcs{:c)f{t—:c) dr.

— o0




Deep networks: Auto-encoders

B [ I B B Reconstructedx

':-:JJ Auto-encoding c(x)

Original x

Deep Networks: Auto-encoders

European Community

Interbank markets monetary/economic
: P S

Energy markets
. : Disasters and
accidents

Leadnngeconomw_:_ R f : : AR -';-:ﬁ Legal/judicial
indicators . .?“ é .y ’%\k
R
%' . - -
., ~;_r‘_- k7 Government

Accounts/ . "y borrowings

eamings ?

The codes produced by a 2000- 500-250-125-2 autoencoder on news
stories by Reuters. Clusters corresponding to different topics, with
different colors, are clearly visible (details in [187]).



Unsupervised learning: What can be
learnt without teachers and labels?

« Modeling and understanding structure is at the
basis of our cognitive abilities.

« A name is a way to group different experiences
so that we can start speaking and reasoning
(think about animal species, or continent’s
names)

First God made heaven and earth. The earth was without form and void, .... And God
said, “Let there be light”; and there was light. And God saw that the light was good; and
God separated the light from the darkness. God called the light Day, and the darkness
he called Night. [. . . ] So out of the ground the Lord God formed every beast of the field
and every bird of the air, and brought them to the man to see what he would call them;
and whatever the man called every living creature, that was its name. The man gave
names to all cattle, and to the birds of the air, and to every beast of the field.

(Book of Genesis)

60




An example
« Clustering different

flowers in a meadow

without knowing names

LMMOMTEvIDE R saso €xir 7
A M9 DA~ 7S50 o -

MEXICO CAT7 oo ~

Lome “”75’\ o -

NEW YenA K 245417 e

PYAINI N 1250 3 -« N~
LG/MOK Pyl T
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Clustering

Clustering: grouping similar things together, then
one can label the groups with names.

Compression of information (prototypes)

The prototype summarizes the information
contained in the subset of cases which it
represents

When similar cases are grouped together, one can
reason about groups instead of individual entities.

Example: marketing segments

Clustering: Representation and metric

//\

External representation by relationships (left) and internal representation
with coordinates (right). In the first case mutual similarities between pairs are
given, in the second case individual vectors.



Clustering: Representation and metric (2)

An internal representation is available for each
entity, and mutual similarities are derived from it

M

dissimilarity ~ Oe(x.y) = [[y — x|/ = J > (wi—w)?

i=1

K-means for hard clustering

« Hard clustering problem: partition the entities
D into k disjoint subsets C = (C,, ... ,C,) to
reach the following two objectives:

i Minimization of the average intra-cluster
dissimilarities

min Z g . x5 ) min Zis(}fd;l)i)-

dy,d2€C; deC;

>, Maximization of inter-cluster distance

Clustering is a multi-objective optimization task



K-means for hard and soft clustering(2)

* Divisive algorithms are very simple clustering
algorithms: begin with the whole set and divide it
Into successively smaller clusters

* For each cluster, its prototype is calculated by
minimizing the its quantization error:

Quantization Error = Z x4 — Pea)ll”, g

d

* k-means clustering partitions the observations
Into k clusters, so that each observation belongs to
the cluster with the nearest centroid

K-means: the algorithm

Choose the number of clusters k.

Randomly generate k clusters and determine
the cluster centroids pc

Repeat the following steps until some
convergence criterion is met

- Assign each point x to the nearest cluster centroid
- Recompute the new cluster centroid

D, Zentities in c:lusterr:x . SIMPLE AND FAST!

number of entities in cluster ¢
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Part 2
The landscape of Intelligent
Optimization

What is the meaning of optimization for you?

72



« Profit = price paid — costs
« Probability of accepting offer
« Actual profit is multiplication of the two factor

Example: determine the best price

Profit Prob.

Unknown:

learn from data!

that customers
accepts

. Ajtz((ggﬂggine) learning... optimize!

Price 73

How to find the minimum

Figure 18.6: Quadratic positive definite f of two variables.

One sees it...

Try many (X,y)
values...

Which values?
All possible vals?

“Local steps”




Global Optimization Problem

Global optimization problem:

Given f:A—=R
find r* e A
such that f(x*™) < f(x) for every & € A.

. X* satisfying above is called a global optimum

. record value (the best-so-far value) at iteration
n '.f}n — lllilliZl:...,n f(*rt}

Two paradigmatic methods

Optimization is a very old topic...

Operations research

Foodis
‘,s@%immunltlon-

. Stochastic global optimization (memory-less,
“brute force”, but very robust)

. Local Search and Reactive Search
Optimization (use learning while optimizing)

76



Paradigml: Stochastic Global
Optimization

Stochastic Global Optimization

. black-box interface: the algorithm can query the
value f(x) for a sample point x, but it cannot “look
inside” f

. separation of concerns: to be as generally applicable

as possible, optimization routines do not need to know
anything about the application domain;

« a computer scientist can improve profits for a financial
institution or improve survivability of patients cured for
cancer without any knowledge of economics or
medicine.

Ignorance can bring value



Black-box optimization

John Von Neumann

“The sciences do not try to explain, they
hardly even try to interpret, they mainly make
models. By a model is meant a mathematical
construct which, with the addition of certain
verbal interpretations, describes observed
phenomena. The justification of such a
mathematical construct is solely and precisely
that it is expected to work - that is correctly

to describe phenomena from a reasonably Apples ;a:Ley o
wide area. Furthermore, it must satisfy certain

. . . . . . Apple fall
esthetic criteria - that is, in relation to how because of the

law of gravitation

much it describes, it must be rather simple.”

80



Stochastic Global Optimization

just function evaluations

function of continuous (real) variables

» One can decide where to place sample points, and
one can use the information obtained to build
internal models of the function and tune its own
meta-parameters.

. stochasticity in the generation of sample points
helps to improve robustness and avoid that some
false initial assumptions lead to low-quality local
optima

Convergence Rate of Pure Random Search

e Success with probability (1 —y)
« In the asymptotic behavior when d is fixed and

cd

« - 0 ,number of iteration for success _O(l)

« Curse of dimensionality

d v=0.1 v = 0.05

=05 =02 e=01e=05 =02 £=0.1
1 0 5 11 0 6 14
2 2 18 73 2 23 94
3 4 68 549 5 88 714
4 7 201 4665 0 378 6070
5 13 1366 43743 17 1788 56011
7 62| 38073 4.9-10° 80| 49534| 6.3-10°
10 924 8.810° 9.0-10°| 1202 1.1-107| 1.210" \
20| 9.4-107| 8.5-10'%| 8.9-10%!| 1.2.10%| 1.1-10'¢| 1.2.10%?
50 [1.5-10%%] 1.2.10*%] 1.3-10%%(1.9-10%%| 1.5-10*®*| 1.7-10%®
100{1.2-1079|7.7-101%919.7.10%%|1.6-107°|1.0-10'1?|1.3-10'*°

Table 2.1. Values of n, = n.(v,e,d), see (2.22), for vol(A) =1, v = 0.1 and 0.05,
£=10.5,0.2 and 0.1, for various d.



Curse of dimensionality

"Abandon all hope, you who enter here”. If dimension is large there
is no magic algorithm to rapidly approximate the global
optimum for a generic function in less than exponential
number of iterations.

There are just too many places to hide in d dimensions.

Hope is related to functions with special forms, so that
regularities can be learnt from an initial sampling, albeit in
approximated form, and used to identify shortcuts leading rapidly
to close approximations of the optimal solution (learning x
optimization)

Chance that we encounter highly-structured functions in real
applications? Not negligible. Nature doe not play dice...

convergence is only a theoretical fiddle

Paradigm2: Local Search and Reactive
Search Optimization (RSO)




Brute force is not the solution

« Let’'s assume that one has to find the minimum
of a discrete (combinatorial) optimization
problem (for example, think about the travelling
salesman problem)

« Evaluating all possible combinations of inputs
can be computationally impossible

« One needs to resort to clever techniques to
solve these problems

Local search based on perturbations

o starting from an initial tentative solution

o try to improve it through repeated small
changes

 stop when no improving local change exists

(local optimum, or locally optimal point)



Local search optimization: notation

« X IS the search space
« X0 Is the current solution at iteration t.

« N( X0) Is the neighborhood of point X,
obtained by applying a set of basic moves p,,
..., Um to the current configuration

N(X®)={X € X suchthat X = p;(X),i=0,...,M}.

Local search optimization

* Local search starts from an admissible
configuration X© and builds a trajectory X,
e X)),

* The successor of the current point is
constructed as follows

Y <+ IMPROVING-NEIGHBOR( N(X®))

x(t+1) Y if f(Y)< f(X®)
X®)  otherwise (search stops).

* IMPROVING -NEIGHBOR returns an
Improving element in the neighborhood



Local optima are not always global optima

« For many optimization problems, a closer
approximation to the global optimum is required

« More complex search schemes have to be
adopted to balance in an optimal way
exploration and exploitation

Attraction basins

« Local minima tend to be clustered (good local
minima tend to be closer to other good minima)

« The attraction basin associated with a local
optimum is the set of points X which are mapped to
the given local optimum by the local search
trajectory

- Iif local search stops at a local minimum, kicking the
system to a close attraction basin can be much more
effective than restarting from a random configuration
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Modifications of local search based on
perturbations

« local search by small perturbations is an
effective technique but additional ingredients
are in certain cases needed to obtain superior
results

Myhts and building blocks

[341] Kenneth S orensen. Metaheuristics—the metaphor
exposed. International Transactions in Operational
Research,22(1):3-18, 2015.

In recent years, the field of combinatorial optimization has
witnessed a true tsunami of “novel” metaheuristic methods, most
of them based on a metaphor of some natural or man-made
process. The behavior of virtually any species of insects, the flow
of water, musicians playing together — it seems that no idea is too
far-fetched to serve as inspiration to launch yet another
metaheuristic. In this paper, we will argue that this line of
research is threatening to lead the area of metaheuristics away
from scientific rigor. ....

94



"It Is a good morning exercise for a research scientist to
discard a pet hypothesis every day before breakfast: it
keeps him young" (Konrad Lorenz, 1903-1989).

Reactive Search Optimization (RSO):
Learning while searching

« Many problem-solving methods are characterized
by a certain number of choices and free
parameters, usually manually tuned.

« Parameter tuning can be automated as a part of
the optimization algorithm

« This leads to self-contained, fully automated
algorithms, independent from human intervention

Reactive Search Optimization (RSO) integrates
online machine learning techniques and search
heuristics for solving complex optimization
problems.



Reactive Search Optimization (RSO):

Machine Learning
and
Neural Networks

Reactive Search Optimization

iIntegration of online machine learning
technigues for local search heuristics.

The word reactive hints at a ready response
to events during the search through an
iInternal online feedback loop for the self-
tuning of critical parameters.

Biological systems are highly adaptive; they use signals
coming in from receptors and sensors to fine-tune their functioning.
Adaptivity is a facet of the reactivity of such systems.

98




Reactive Search Optimization

* RSO can be applied to systems that require to set
some operating parameters to improve its
functionality.

* A simple loop is performed: set the parameters,
observe the outcome, then change the parameters
In a strategic and intelligent manner until a suitable
solution is identified

* In order to operate efficiently, RSO uses memory
and intelligence to improve solutions in a directed
and focused manner

Reactive Search Optimization

« While many alternative solutions are tested in
the exploration of a search space, patterns and
regularities appear

« The human brain quickly learns and drives
future decisions based on previous
observations.

« This is the main inspiration source for inserting
online machine learning technigques into the
optimization engine of RSO



RSO based on prohibitions: tabu search

« Basic idea: using prohibitions to encourage
diversification

How?

« While constructing a trajectory for local minima
search, every time a move is applied, the
Inverse move is temporarily prohibited



Tabu search: an example

* Let x={0,1}-

* The neighborhood is obtained by applying the
elementary moves y;, (i=1,...,L) that change the i
-th bit of the string X = [X4,..., Xi,..., X/]

* At each step, the selected move is the one that
minimizes the target f in the neighborhood even if
f increases, to exit from local minima.

* As soon as a move is applied, the inverse move
Is temporarily prohibited

Prohibition and diversification

Let H(X, Y ) be the Hamming distance
between two strings X and Y

« If only allowed moves are executed, and T
satisfles T < (n - 2) (at least two moves are
allowed at each iteration), then

e The Hamming distance H between a starting point and successive points
along the trajectory is strictly increasing for T' + 1 steps:

HX®D) XU)y=7 for 7<T+1.

e The minimum repetition interval R along the trajectory is 2(1" + 1):

X = xO = R>9(T+1).
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Tuning the T parameter

* The parameter T should be tailored to the
specific problem

* BUT the choice of a fixed T without a priori
knowledge is difficult

* RSO uses a simple mechanism to change T
during the search so that the value T® s
appropriate to the local structure of the problem

* RSO determines the minimal prohibition value
which is sufficient to escape from an attraction
basin around a minimizer



RSO for tabu search

« T Is equal to one at the beginning

« T increases if the trajectory is trapped in an
attraction basin

« T decreases if unexplored search regions are
visited, leading to different local optima



RSO: conclusions

If the problem has a single local optimum the power of
RSO is not needed, although not dangerous

Most real-world problems are infested with many locally
optimal points

RSO is crucial to transform a local search building
block into an effective and efficient solver.

RSO with prohibitions has been used for problems
ranging from combinatorial optimization to the
minimization of continuous functions and to sub-
symbolic machine learning tasks

Part 3
Disruptive innovation by
combining ML + 10
(“automated creativity”)



Optimization: a tremendous power

Tapping and musik

« Still largely unexploited in most real-world contexts:
standard optimization assumes a function f(x) to be
minimized, ...and math knowledge.

«function f(x) (a.k.a “model”) helps people to concentrate
on goals/objectives, not on algorithms (on policies not on
processes)

« BUT static f(x) does not exist in explicit form or is
extremely difficult and costly to build by hand, and math
knOW|edge |S scarce. Try asking an hotel manager
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A practical view of a «function»

Rating

1

(Accommodation offer, Tourist)



Real word is dirty (black?)

Some posivite objectives (MOOP)
Combination not clear

Hidden objectives
Dynamic aspirations

Learn |

No math formula
Maybe some
high-level
knowledge

and intuition

Learn |

Many inputs,
noisy,
some irrelevant

Learmn 4

Meachine Learning i "

Optimization: a tremendous power

Machine learning: learn f(x) from data (including from
user feedback)

Learning and Intelligent Optimization (LION): e
machine learning from data for optimization which can
be applied to complex, noisy, dynamic contexts.

ML to approximate f(x) but also to guide opt. process
via self-tuning, both offline and online

Autonomy: more power directly in the hands of
businesses

114



Optimization - for Machine Learning

Source of power

Flexible model (with parameters w) How to pick w?

—ErrorFunctionr E{w)
Learn by minimizing E(w) on training examples

...generalization

complicates a bit

MLP and Backpropagation

SVM ...

] %
VALIDATION
TSR;_'-,"—"N(' SET

Machine Learning > for Optimization

Practical optimization is coslty ...f(x)

o Kriging s N

Danie Gerhardus Krige
(26 August 1919 — 3 March 2013)

Gaussian processes, Bayes ines, local models in

continous optimization....
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Angela Kunoth: «adaptive multi-scale»



If f(xX) not given? Learn what to optimize

Example: MOP: Finding a partner: intelligence versus beauty
How many IQ points for one less beauty point?
Is beauty more important than intelligence for you? By how much?

Effective optimization
as iterative process with learning

Pareto-optimality

8 Difficult
= q
3 ° Compromises !
$
£
°
beauty

Figure 41.3: Pareto optimality. All dominated points like the persons in the middle
are not considered as potential candidates for the final choice. On the Pareto frontier, 118
shown with a dashed line, tradeoffs need to be considered.



Many hot issues are MOOPs

« Energy production (best mix...nuclear, oil, wind, solar)
- Objectives: Cost / safety / pollution
« Transportation (cars, trains, roads, metro, taxi, uber, ...)
- Objectives: Energy consumption / speed / safety
« Healthcare (prevention, cure, cancer, explosion of costs..)
- Objectives: Money / age / overall quality of life /
priorities

Pareto-optimality (dealing with tradeoffs) has a huge educational
impact to avoid extremism, fanaticism, radicalism

Compromises are a necessity

Flexible and interactive decision
support and problem solving

Crucial decisions depend on factors and priorities
which are not always easy to describe before.

Feedback from the user in the exploration phase!




Multiobjective optimization

Intermediate (classical) case of missing
knowledge:

some criteria are given f1(x) f2(x) ... fk(x)

but not easily combined into a single f(x)

...provide efficient vector solutions (f1,...,fk)
leave to the user the possibility to decide
(and to /earn about possibilities and “real”

objectives, even if not formalized)
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Efficient frontier (PF)

Pareto Front
\

no other feasible solution is strictly better in one objective
and at least as good for the other ones

£, 1 Objective Space

Image of Feasible
Region in the
Objective Space

AN f

Preferred solution 122
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Interactive methods

« Solutions generation phases alternated to
solution evaluation phases requiring user
Interaction

 Effective approach

- Only a subset of the Pareto optimal set has to be
generated and evaluated by the DM

- The DM drives the search process

- The DM gets to know the problem better (learning
on the job)
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Conclusions

e business innovation now Iis:

- machine learning + intelligent optimization

« most traditional business are bound to disappear...

« the new context requires humility (ask for help
by non-experts of your field!)

Interesting area for young
and open-minded researchers,
challenging problems still ahead!

Nerds are conquering the world!



Aim high

Act like the clever archers (arcieri prudenti) who, designing to hit the
mark which yet appears too far distant, and knowing the limits to which
the strength of their bow attains, take aim much higher than the mark,
not to reach by their strength or arrow to so great a height, but to be
able with the aid of so high an aim to hit the mark they wish to reach.

Niccolo Machiavelli ,
The Prince, c.a. 1500

Thank you
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