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Part 1
Machine learning:

From Data to Models

Data mining

 Internal

 Databases

 Web logs

 Application logs

 External

 Social network APIs

 Data brokers

 Web scraping



Data mining: databases

Highly structured

Relatively fast, can respond to complex queries 
by means of a fairly structured language (SQL)

Designed to store information related to normal 
operativity: property/accommodation info, 
prices, availability, reservations, customers...

Data mining: databases
“For each property and accommodation type, how 

many reservations involving August dates have 
been confirmed?”

SELECT
`a`.`property_id`, `r`.`accommodation_id`, COUNT(`r`.`id`)

FROM
`reservation` AS `r`
JOIN `accommodation` AS `a`
    ON `a`.`id`  = `r`.`accommodation_id`

WHERE
`r`.`checkin` < "2019-09-01"
AND `r`.`checkout` >= "2019-08-01"
AND `r`.`confirmed` = 1

GROUP BY
`r`.`accommodation_id`

ORDER BY
`a`.`property_id`,
`r`.`accommodation_id`;

+-------------+------------------+-----------------+
| property_id | accommodation_id | COUNT(`r`.`id`) |
+-------------+------------------+-----------------+
|       14185 |            14282 |               2 |
|       14185 |            14299 |               6 |
|       14185 |            14493 |               7 |
|       14497 |            14507 |               2 |
|       14497 |            14516 |               4 |
|       14497 |            14529 |              21 |
|       14497 |            14542 |              15 |
|       14497 |            14555 |              12 |
+-------------+------------------+-----------------+



Data mining: web logs

Quite structured

Record interaction events between customers and 
reservation portal

Not all details available (e.g., request variables, 
detailed responses)

However, they can fully track a specific user’s 
interaction with the website by means of the 
“referer” field

Data mining: web logs

11.22.33.44 - - 
[20/Jun/2019:07:11:09 +0000]
"GET /en/show/12345?
embedded=1 HTTP/1.1"
200 41295
"https://official_hotel_site
.com/en/book-now"
"Mozilla/5.0 (Macintosh; 
Intel Mac OS X 10_14_5) 
AppleWebKit/537.36 (KHTML, 
like Gecko) 
Chrome/74.0.3729.169 
Safari/537.36"

Initial contact with the reservation portal by user referred by 
the official hotel site in English



Data mining: application logs

 (Almost) unstructured text files, may contain 
every detail the application designer (or, more 
often, the actual coder) deems to be relevant 
for debugging/tracing.

 Possibly hard to parse, structure changes over 
time depending on new developers being 
added to the project, new functions…

 Often provide precious information about 
customer interaction.

Data mining: application logs

2019-07-03T05:08:54.758Z INFO Computing price for property 20860-a2aa11f0-9d50-11e9-
98d2-3ba9bed9a43e, accommodation 1

FREE 16 0 17 0 0 0

AGE DELTAS [ 0, 0 ]

LAST 2019 6 16 2019-07-03T05:08:54.759Z 348.8514558333333 0 0

2019-07-03T05:08:54.759Z INFO Proposed price: 20860-a2aa11f0-9d50-11e9-98d2-
3ba9bed9a43e 20870 2019-07-17T00:00:00.000Z 2019-07-18T00:00:00.000Z 1 0 1 true 17 
80

2019-07-03T05:08:54.759Z INFO Computing price for property 20860-a2aa11f0-9d50-11e9-
98d2-3ba9bed9a43e, accommodation 2

FREE 16 0 17 0 0 0

AGE DELTAS [ 0, 0 ]

LAST 2019 6 16 2019-07-03T05:08:54.760Z 348.85145555555556 0 0

...

Example: free-form debug information about a 
potential guest asking for quotes in specific dates



Data sources: external providers

Facebook/Twitter/... APIs (with limitations)

Data brokers: collecting and selling information

Websites: scraping data without annoying the 
webmaster (and keeping below the radar of DoS 
detectors).

External sources: web scraping



Example: tracking a guest’s 
reservation

Weblog: locate early access, referrer and landing 
page.

Application log: see history of queries (different 
dates/options), confirmation attempts, credit 
card acceptance/refusal...

Database: further reservation details, possible 
cancellation, checkin/out, purchases...

Example: user tracking



Detour: “big” data?

CERN ATLAS experiment

Source: atlasexperiment.org – ATLAS 18-page fact sheet



Source: atlasexperiment.org – ATLAS 18-page fact sheet



Generative models
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Modeling the customer
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Modeling the customer

Cumulate number of reservations d days before check-in

(100 = #reservations @check-in)

Modeling the customer

Pr ( k )=
e

−λd λd
k

k!

Model: number k of 
events taking place d 
days before check-in: 

Standard non-homogeneous 
Poisson process: every day 
is characterized by a possibly 
different parameter λ

d
. 
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Parameters based on historic data

Modeling the customer



Modeling the customer

Modeling the customer



Modeling the customer

Pr (u )=1−σ ( u−μ
η )

σ ( x )=
1

1−e− x

 μ is the median acceptance price
 η controls the slope (rate of decay) – the smaller, the sharper

where

Pricing policies
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Event generator
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Pricing policy: dynamic programming
u=u (c,τ )

V (c,τ )=p (u,τ ) (u+V (c−1 ,τ−1 ) )+(1−p (u,τ ) )V (c,τ−1 )

c Residual capacity
τ Days in advance of checkin

Pricing policy

u=u0×f 1 (LoS )×f 2 (τ )× f 3 (nrooms )× f 4 (c )

LoS

τ

nrooms

c

u

Factored:

Neural net: 1



Pricing policy

Price may be a function of:

 Capacity

 Predicted (un)constrained demand

 OTB demand

 Similar day previous years

 Request features (LoS,…)

 Customer’s predicted reference price, 
elasticity...

The protocol

Simulator

Event generator
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Pricing
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Optimality criterion
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The protocol
(a) Reservation + check-in

Customer Hotel

Yay!

Good!

The protocol
(b) Refusal

Customer Hotel

...no probs



The protocol
(c) Cancellation

Customer Hotel

Oh, OK...

Good!

The protocol
(d) No-show

Customer Hotel

???

Good!



The protocol
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Decision
variables

(Pricing policy
parameters)

Optimality
criterion
(output)

Optimization algorithm

Learning the simulator?

Simulator model

Wetware

xkcd.com, July 8, 2019

Restaurant owner:

I use a stack of Neural Networks.
I trained a simple NN, “Cindy”, on basic tasks, 
such as rejecting unprofitable couples on a 
date.
Then a more powerful NN overrides it for 
more complex situations and outliers.



Pricing policy comparison: small 
hotel

Pricing policy comparison: small 
hotel



Pricing policy in action: small hotel

Pricing policy in action: large hotel



Pricing policy in action: small hotel

Pricing policy in action: large hotel


